ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Studies on the analysis of 25-hydroxyvitamin D₃ by isotope-dilution liquid chromatography-tandem mass spectrometry using enzyme-assisted derivatisation

Jonas Abdel-Khalik ^{a,*}, Peter J. Crick ^a, Graham D. Carter ^b, Hugh L. Makin ^{c,1}, Yuqin Wang ^a, William J. Griffiths ^{a,*}

- ^a Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
- b DEQAS, Imperial College Healthcare NHS Trust, Clinical Biochemistry Department, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
- ^c Barts and the Royal London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK

ARTICLE INFO

Article history: Received 13 January 2014 Available online 30 January 2014

Keywords: Vitamins D Serum Cholesterol oxidase 17βHSD10 Girard P reagent IC-MSⁿ

ABSTRACT

The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D_3 and 25-hydroxyvitamin D_2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27- 2H_6]hydroxyvitamin D_3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β -hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β -Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α -hydroxy group in the 3α -hydroxy epimer of 25-hydroxyvitamin D_3 . Quantification is achieved by isotope-dilution liquid chromatography-tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D_3 performed on adult human serum give recovery of 102-106%. Furthermore in addition to 25-hydroxyvitamin D_3 , 24,25-dihydroxyvitamin D_3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum.

© 2014 The Authors. Published by Elsevier Inc. Open access under CC BY license.

1. Introduction

Vitamin D₂ and D₃ belong to the class of *secosteroids* which, compared to common steroids are characterised by having an open

Abbreviations: 1α ,25-(OH)₂D₃, 1α ,25-dihydroxyvitamin D₃; 3-epi-25-OHD₃, 3-epi-25-hydroxyvitamin D₃; 17β HSD10, 17β -hydroxysteroid dehydrogenase type 10; 24,25-(OH)₂D₃, 24,25-dihydroxyvitamin D₃; 17β HSD10, 17β -hydroxyvitamin D₃; 17β HSD10, 17β -hydroxyvitamin D₃; 17β -hydroxyvitamin D₃; 17β -hydroxyvitamin D₃; 17β -hydroxyvitamin D₃; 17β -holotinamide adenine dinucleotide; CYP, cyto-hrome P450; CV, coefficient of variation; GP, Girard P reagent; DEQAS, Vitamin D External Quality Assessment Scheme; LC, liquid chromatography; MS, mass spectrometry; MSⁿ, mass spectrometry with multistage fragmentation; NIST, National Institute of Standards and Technology; Py, pyridine; RIC, reconstructed ion chromatogram; SPE, solid phase extraction; SRM, standard reference material; IIV rultra violet

* Corresponding authors. Address: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, IIK

E-mail addresses: J.A.F.A.ABDEL-KHALIK.744116@swansea.ac.uk (J. Abdel-Khalik), w.j.griffiths@swansea.ac.uk (W.J. Griffiths).

¹ Present address: Plas Talgarth, Llanvaches, Caldicot, Gwent, UK.

B ring between carbons 9 and 10 [1]. As in oxysterols the configuration around the C-5–C-6 double bond is Z (Fig. 1A). Ultra violet (UV) B light from the sun causes the formation of vitamin D_3 from 7-dehydrocholesterol in the upper dermis layers of the skin [1–5]. Vitamin D_2 is formed in plants and fungi following photolysis of ergosterol by UV irradiation and appears in dietary supplements and fortified foods [1,4]. Vitamins D_3 and D_2 are metabolized in the liver by cytochochrome P450 (CYP) enzymes to 25-hydroxyvitamin D_3 (25-OHD $_3$) and D_2 (25-OHD $_2$), respectively. 25-Hydroxyvitamins D are further metabolized, primarily in the kidney, but also in other target tissues to their active metabolites 1α ,25-dihydroxyvitamin D_3 (1α ,25-(OH) $_2D_3$) and D_2 (1α ,25-(OH) $_2D_3$) and the metabolites 24,25-dihydroxyvitamin D_3 (24,25-(OH) $_2D_3$) and D_2 (24,25-(OH) $_2D_3$) [1].

Insufficiency in vitamins D is claimed to be associated with diseases such as cardiovascular disease, hypertension, diabetes, cancer, skin disorders and autoimmune disease [2,3,6]. Due to the recent increase in numbers of vitamins D analysis performed worldwide there is a need for accepted reference methods for

Fig. 1. (A) Overview of the enzyme-assisted derivatisation method for 25-OHD₃. (B) MS² and MS³ fragmentation pathways for 25-OHD₃.

determination of 25-OHD $_2$ and 25-OHD $_3$ in human serum, the indicators of vitamins D status [4]. Liquid chromatography (LC) offers separation of 25-OHD $_2$ and 25-OHD $_3$ from each other and from much matrix interference, including isobaric interferences from e.g. the endogenous 3α -hydroxy epimer of 25-OHD $_3$ (3-epi-25-OHD $_3$) [7,8]. Use of isotope dilution mass spectrometry (MS) typically further limits matrix effects and improves precision and accuracy [8]. LC-MS has been proposed as the "gold standard" for quantification of 25-hydroxyvitamins D in serum [8]. Within the last ten years LC-MS has grown in use and today about 11% of clinical laboratories use LC-MS for vitamins D analysis [7,8]. Currently there are two procedures based on LC-MS which have been accepted as reference method procedures by the Joint Committee for Traceability in Laboratory Medicine [9,10].

The aim of this report is to introduce a novel procedure for quantification of 25-OHD_3 in adult human serum, which involves enzyme-assisted derivatisation with cholesterol oxidase and derivatisation with Girard P (GP) reagent. As vitamin D_2 is used pharmaceutically to treat vitamins D deficiency mostly in the USA, and the adult human serum analysed in this study originated from the UK, 25-OHD_2 was not included in our studies [2]. The new method offers improved sensitivity and most importantly specificity for vitamins D analysis compared to the two current reference methods [9,10]. Briefly the method involves oxidation of the 3β -hydroxy group of 25-OHD_3 with cholesterol oxidase followed by derivatisation of the newly formed 3-oxo group with GP reagent (Fig. 1A). The method is a modification of the published protocol for oxysterol analysis [11,12].

2. Materials and methods

25-OHD₃ was from Standard Reference Material (SRM) 2972 from the National Institute of Standards and Technology (NIST, Gaithersburg, Maryland, USA). It was dissolved in ethanol at a certified concentration of 846.0 nmol/L (338.9 ng/mL). 3-Epi-25-OHD₃ (≥98% chemical purity) in ethanol at 100 µg/mL was purchased from Sigma-Aldrich (Dorset, UK). 1\alpha,25-(OH)2D3 and 24,25-(OH)₂D₃ were from Sigma-Aldrich. The internal standard 25- $[26,26,26,27,27,27-^{2}H_{6}]$ hydroxyvitamin D_{3} ($[^{2}H_{6}]$ 25-OHD₃) was from Medical Isotopes, Inc. (Pelham, NH, USA) and was of chemical and isotopic purity >99% and >98%, respectively. Cholesterol oxidase from Streptomyces sp, glutathione S-transferase tagged human 17β-hydroxysteroid dehydrogenase 10 (17βHSD10) and β-nicotinamide adenine dinucleotide (β-NAD⁺) hydrate were from Sigma-Aldrich (Dorset, UK). GP reagent [1-(carboxymethyl)pyridinium chloride hydrazide] was purchased from TCI Europe (Oxford, UK). [2H₅]GP reagent was synthesised in house. Solid phase extraction (SPE) cartridges, Certified Sep-Pak C18, 200 mg (3 cm³), and 60 mg Oasis HLB (3 cm³), were from Waters Inc. (Elstree, UK). Solvents were obtained from Fisher-Scientific (Loughborough, UK). Acetic acid and formic acid were of AnalaR NORMAPUR grade (BDH, VWR, Lutterworth, UK). Potassium dihydrogen phosphate and potassium pyrophosphate decahydrate were from Sigma-Aldrich.

Stock solutions of $1\alpha,25-(OH)_2D_3$ and $24,25-(OH)_2D_3$ were prepared by dissolving $100~\mu g$ in 1~mL of absolute ethanol ($100~ng/\mu L$). A stock solution of $[^2H_6]25-OHD_3$ was prepared by dissolving 1.70~mg in 17~mL absolute ethanol ($100~ng/\mu L$). All stock solutions were stored in the dark. Working solutions ($1~ng/\mu L$) were made

immediately before sample preparation by diluting 10 μL stock solution in 990 μL of absolute ethanol.

2.1. Procedure

2.1.1. Sample preparation

Sample preparation of serum was largely performed as previously described [12]. In brief, 100 µL of serum was added dropwise to a solution of acetonitrile (1.05 mL) containing 1 ng of [2H₆]25-OHD₃. After 10 min sonication in an ultrasonic bath the solution was centrifuged at 14,000g at 4 °C for 30 min. The supernatant was dried under vacuum using a ScanLaf ScanSpeed vacuum concentrator and reconstituted in 1.05 mL of absolute ethanol and sonicated for 15 min. Water (0.45 mL) was added dropwise and ultrasonication continued for a further 5 min. The final sample solution of 1.5 mL 70% ethanol was loaded onto a 200 mg Certified Sep-Pak C18 cartridge pre-conditioned with 4 mL of absolute ethanol and with 6 mL of 70% ethanol. The solvent flow through the column was at a rate of \sim 0.25 mL/min assisted by negative pressure at the column outlet generated by a vacuum manifold (Agilent Technologies). The flow-through (1.5 mL) was combined with a column wash of 70% ethanol (5.5 mL) to give fraction SPE1-Fr1 (7 mL). A second fraction (SPE1-Fr2) was collected by eluting with a further 4 mL of 70% ethanol before fraction 3 containing cholesterol was eluted with 2 mL of absolute ethanol (SPE1-Fr3). Finally, a fourth fraction eluted with a second 2 mL of absolute ethanol, (SPE1-Fr4). Each fraction was divided into two equal fractions (A) and (B) and allowed to dry overnight under reduced pressure. Lyophilised material was reconstituted in 100 µL of propanol-2-ol. The remainder of the procedure, oxidation with cholesterol oxidase and GP derivatisation followed by SPE purification, was performed as previously described with the exception that Sep-Pak C18 cartridges were replaced by Oasis HLB cartridges [11-13].

2.1.2. LC-MS and MSⁿ analysis

Analysis was performed on a LTQ-Orbitrap Velos (Thermo Fisher Scientific, UK) equipped with an electrospray probe, and a Dionex Ultimate 3000 LC system (Dionex, UK), essentially as described by Griffiths et al. [12]. The only major difference was in the MS³ events where in the current study we exploited the neutral losses of 97.05 Da ([M]* \rightarrow [M-Py-18]* \rightarrow) rather than 79.04 Da ([M]* \rightarrow [M-Py]* \rightarrow) as 25-hydroxylated metabolites of vitamins D lose water in addition to pyridine in the initial fragmentation event (Fig. 1B) while oxysterols mostly lose pyridine [12].

2.1.3. Quantification

Serum 25-OHD₃ was quantified by stable isotope dilution LC–MS against $[^2H_6]$ 25-OHD₃ reference standard.

2.2. Optimisation of extraction

Acetonitrile and ethanol were compared in their ability to extract 25-OHD₃ in serum. Performance of a single-step extraction was compared against a two-step extraction i.e., re-extraction of the pellet following the initial extraction. Extraction in acetonitrile was performed as stated above while extraction in ethanol was performed as described by Griffiths et al. [11,12]. The supernatant generated by the second extraction was either combined with that from the first extraction or processed separately.

2.3. Recovery experiments

2.3.1. Standard addition of $[^{2}H_{6}]25$ -OHD₃

Known amounts of $[^{2}H_{6}]25$ -OHD₃ (2, 4 or 6 ng) were added to 100 μ L of serum (batch DEQAS423, the endogenous level of 25-

OHD₃ was predetermined using 1 ng of internal standard), and extracted once using acetonitrile as described above. Each experiment was performed in triplicate. Recovery was determined at each concentration of added internal standard by dividing the experimentally measured concentration ratio of 25-OHD₃ to $[^2H_6]25$ -OHD₃ with the theoretical concentration ratio (Eq. (1)) [9].

$$\label{eq:Recovery} \begin{split} \% \, &\text{Recovery} = \left\{ \left([25\text{-OHD}_3]/[^2\text{H}_6]25\text{-OHD}_3 \right)_{\text{exp}} / \right. \\ & \left. \left([25\text{-OHD}_3]/[^2\text{H}_6]25\text{-OHD}_3 \right)_{\text{theor}} \right\} \times 100\% \end{split} \tag{1}$$

2.3.2. Standard addition of 25-OHD₃

A second recovery experiment was performed by adding known amounts of 25-OHD_3 (1, 2, 4 or 6 ng) to $100~\mu\text{L}$ serum (batch DE-QAS424, the endogenous level of 25-OHD_3 was predetermined), and extracting once using acetonitrile. The internal standard $[^2H_6]25\text{-OHD}_3$ (1 ng) was added to each sample. Each experiment was performed in triplicate. Recovery was determined at each concentration of added 25-OHD_3 by dividing the experimentally measured serum concentration of 25-OHD_3 with the theoretical concentration (Eq. (2)) [9].

$$\%\,Recovery = \left\{ [25\text{-OHD}_3]_{exp}/[25\text{-OHD}_3]_{theor} \right\} \times 100\% \tag{2} \label{eq:expansion}$$

2.4. Selective derivatisation of 3-epi-25-OHD₃

Oxidation of 400 ng of 3-epi-25-OHD₃ or 25-OHD₃ by 17βHSD10 was essentially performed as described in the literature for steroid hormones and bile acids [14,15]. 30 mg of β -NAD⁺ was dissolved in 1 mL of 100 mM pyrophosphate buffer pH 8.9. 3-Epi-25-OHD₃ or 25-OHD₃ dissolved in ethanol was added (10 μL), giving a final concentration of 1% ethanol. Finally 1 μg of 17βHSD10 was added, giving an enzyme concentration of 1 µg/mL. After incubation at room temperature for 24 h, 40 µL of methanol was added (content of organic solvent is now 5%). The mixture, followed by a 0.5 mL rinse (5% methanol) of the reaction tube, was loaded on a 60 mg HLB cartridge previously washed with 6 mL of methanol and conditioned 6 mL of 5% methanol. The loaded cartridge was washed with 6 mL of 5% methanol. Elution of secosterols was performed with 2 mL of methanol into which 1 mL of water was added to make the solution 67% methanol and quenching any residual enzyme activity [11-13]. Glacial acetic acid (150 μL) was then added followed by GP reagent (150 mg) and the mixture left at room temperature overnight. Finally SPE recycling on a 60 mg Oasis HLB cartridges to remove excess derivatisation reagent was carried out as described previously [11-13]. LC-MSⁿ analysis was performed as described above (Section 2.1.2).

3. Results and discussion

3.1. General considerations related to the methodology

GP derivatisation of 25-OHD₃ provides multiple advantages including increased solubility in mobile phases commonly used for LC-MS, enhanced ionisation, characteristic fragmentation patterns in MS² i.e. loss of pyridine (Py) and water giving [M-Py-18]⁺ ions (Fig. 1B), and structurally informative MS³ spectra ([M]⁺ \rightarrow [M-Py-18]⁺ \rightarrow) with particularly intense fragment ions at m/z 189 for 25-OHD₃ (Fig. 1B) and its side-chain oxidised metabolites (Fig. 2E, F, H) or m/z 205 for 1,25-(OH)₂D₃ and its metabolites (Fig. 2G). The current method, with specific fragment ions at m/z 189 and 205, provides advantages over other LC-MS/MS procedures based on the loss of water or other nonspecific fragmentations [9]. With respect to sensitivity, LC-MS analysis of GP-derivatised 25-OHD₃ in serum (16.54 ng/mL, on-column injection

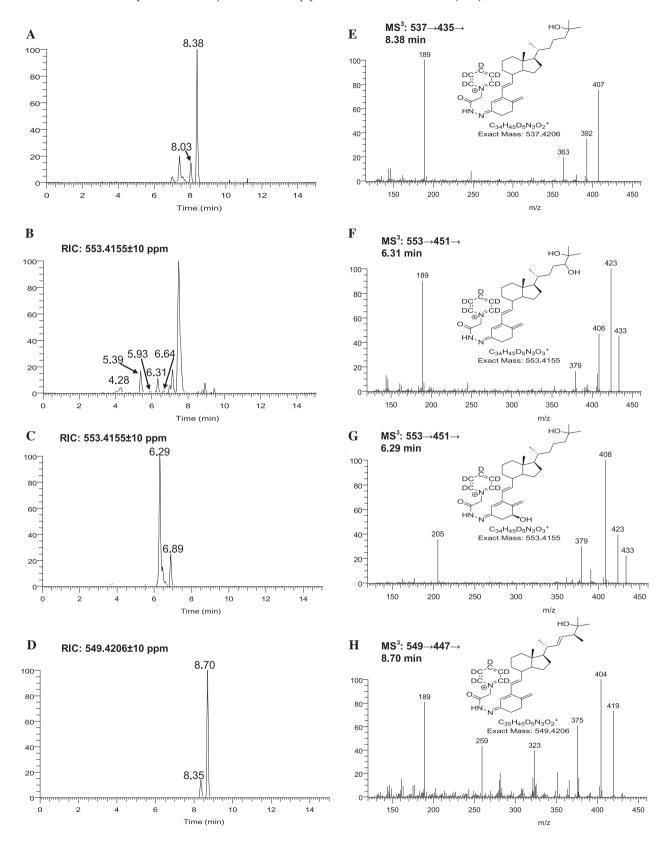
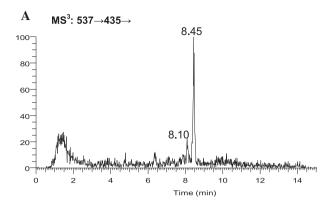



Fig. 2. LC-MS RIC \pm 10 ppm appropriate to GP-derivatised (A) monohydroxyvitamin D₃, (B) dihydroxyvitamin D₃, authentic (C) 1,25-(OH)₂D₃ and (D) 25-OHD₂. RIC shown in (A) and (B) are for adult human serum, (C) and (D) are of authentic standards (25 pg on-column). GP-derivatives form syn and anti conformers about C-3 this is evident in (A) where 25-OHD₃ elutes in two peaks at 8.03 and 8.38 min, in (B) where 24,25-(OH)₂D₃ elutes at 5.93 and 6.31 min and in (D) where 25-OHD₂ elutes at 8.35 and 8.70 min. Shown in (E-H) are MS³ ([M]* \rightarrow [M-Py-18]* \rightarrow) spectra of GP-derivatised 25-OHD₃, 24,25-(OH)₂D₃, 1 α ,25-(OH)₂D₃, and 25-OHD₂. In this example [²H₅]GP reagent was used. Due to the presence of the 1 α -hydroxy group in 1 α ,25-(OH)₂D₃ its major fragment in the low m/z range is m/z 205 rather than m/z 189 as seen for 25-OHD₃, 24,25-(OH)₂D₃ and 25-OHD₂. This agrees with the fragmentation pathway presented in Fig. 1B. The major unannotated peak in (B) corresponds to GP-derivatised 3 β -hydroycholest-(25R)-5-en-26-oic acid, a major component of human serum [12].

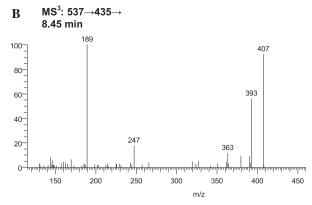


Fig. 3. (A) MS 3 ([M *] \rightarrow [M-Py-18] * \rightarrow) TIC of 3-epi-25-OHD $_3$ oxidized with 17 β HSD10 and derivatised with GP reagent. (B) MS 3 spectrum of 3-epi-25-OHD $_3$ -GP eluting at 8.45 min. As in Fig. 2 [2 H $_5$]GP reagent was used.

of 6.8 pg) gives a signal-to-noise ratio of approximately 60 (Fig. 2A). In comparison the limits of detection are 10 and 40 pg on-column for the two current LC–MS reference methods [9,10]. By generating reconstructed-ion chromatograms (RIC) for the transitions $[M]^+ \rightarrow [M-Py-18]^+ \rightarrow m/z$ 189 or 205 appropriate for dihydroxy metabolites of vitamin D₃, the presence of possible vitamin D₃ metabolites eluting at 4.28, 5.39, 5.93, 6.31, and 6.64 min was revealed (Fig. 2B). Analysis of an authentic standard of 24,25-(OH)₂D₃ confirmed the peaks at 5.93 and 6.31 min to be the *syn/anti* conformers of 24,25-(OH)₂D₃.

Although the derivatisation protocol exploited here was originally developed for the analysis of oxysterols [11,12], we now show that it is equally applicable to vitamins D metabolites. In Fig. 2 we show the utility of the method to the analysis of the secosterols, 25-OHD $_3$ and 24,25-(OH) $_2$ D $_3$ in adult human serum and to 1,25-(OH) $_2$ D $_3$ and 25-OHD $_2$ standards. Thus, an open B ring in secosterols does not prevent their oxidation by cholesterol oxidase.

As 3-epi-25-OHD₃ and 25-OHD₃ only differ in the configuration of the 3-hydroxy group, following oxidation with cholesterol oxidase then GP derivatisation their products are identical. Therefore 3-epi-25-OHD₃ could interfere with the analysis of 25-OHD₃. However, we find that in 1 h incubations with cholesterol oxidase the efficiency of oxidation of 3-epi-25-OHD₃ is less than 10% that of 25-OHD₃. As the adult serum concentration of 3-epi-25OHD₃ is typically only 4% that of 25-OHD₃ [8], interference by 3-epi-25-OHD₃ will result in <1% overestimation of the serum concentration of 25-OHD₃. However, in cases where the presence of 3-epi-25OHD₃ is suspected (infants <1 year) its exact level can be determined using the enzyme 17 β HSD10 (see Section 3.2 below), and by incorporating the internal standard 3-epi-25-[6,19,19-²H₃]OHD₃ its relative contribution to the peak of GP derivatised 25-OHD₃ can be determined.

3.2. Novel derivatisation of 3-epi-25-OHD₃

17βHSD10 is a multifunctional enzyme capable of oxidizing multiple steroids with 3α-, 7α-, 7β-, 17β-, 20β-, or 21-hydroxy group if its cofactor, β-NAD $^+$ is present [14–16]. Thus, 17βHSD10 could be an enzyme capable of oxidizing 3-epi-25-OHD $_3$ (3α-hydroxy) but not 25-OHD $_3$ (3β-hydroxy), thereby allowing selective analysis of 3-epi-25-OHD $_3$ following GP derivatisation. The biological significance if any of 3-epi-25-OHD $_3$ remains to be elucidated, but it contributes 9–61% of the total 25-hydroxyvitamins D in infant (<1 year) sera [8]. Oxidation of authentic standards of 3-epi-25-OHD $_3$ and 25-OHD $_3$ by 17βHSD10 followed by GP derivatisation proved that the enzyme was capable of oxidizing 3-epi-25-OHD $_3$

(Fig. 3A and B), but no product of 25-OHD₃ oxidation was observed. Currently analytical methods in the literature rely on chromatographic resolution of 3-epi-25-OHD₃ from 25-OHD₃ [8]. Use of 17βHSD10 to oxidize selectively 3-epi-25-OHD₃ provides an alternative route for its specific analysis.

3.3. Optimisation of extraction

In Supplementary Table S1 a comparison of the amounts of 25-OHD $_3$ recovered from adult serum using different extraction methods is given. Extraction with ethanol was less efficient than with acetonitrile. Two-step extraction with acetonitrile was no more efficient than a single extraction. The concentration of 25-OHD $_3$ determined using the one-step acetonitrile extraction was 17.76 \pm 0.79 ng/mL (mean \pm SD), with a coefficient of variation (CV) of <5%. This agrees well with the value of 18.07 ng/mL certified by NIST for the sample using their LC-MS reference method [9]

3.4. Recovery experiments

Supplementary Tables S2 and S3 show recovery data from experiments exploiting standard addition of $[^2H_6]25$ -OHD $_3$ (102.0–106.3%) and of 25-OHD $_3$ (101.2–104.9%), respectively, to adult human serum. The within-batch precision was <6% in both experiments.

In conclusion we report an LC–MSⁿ method based on enzymeassisted derivatisation for the analysis of vitamins D metabolites, including 3-epi-25-OHD₃. In addition to being accurate and robust in quantifying the serum level of adult 25-OHD₃, diagnostic MS³ fragment ions of m/z 189 and 205 confirm the identification of vitamins D metabolites.

Acknowledgments

NIST supplied the certified 25-OHD₃ standard. Serum samples were supplied by DEQAS. Work in Swansea was supported by funding from DEQAS (studentship for JA-K) and BBSRC (Grant Nos. BBC5157712, BBC5113561, BBI0017351).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bbrc.2014.01.088.

References

- H.L.J. Makin, G. Jones, M. Kaufmann, M. Calverley, Analysis of vitamins D their metabolites and analogues, in: H.L.J. Makin, D.B. Gower (Eds.), Steroid Analysis, Springer, London, United Kingdom, 2010 (Ch.11).
- [2] M.F. Holick, T.C. Chen, Vitamin D deficiency: a worldwide problem with health consequences, Am. J. Clin. Nutr. 87 (2008) 1080S–1086S.
- [3] J.S. Adams, M. Hewison, Update in vitamin D, J. Clin. Endocrinol. Metab. 95 (2010) 471–478.
- [4] G.D. Carter, Accuracy of 25-hydroxyvitamin D assays: confronting the issues, Curr. Drug Targets 12 (2011) 19–28.
- [5] M.R. Haussler, G.K. Whitfield, I. Kaneko, C.A. Haussler, D. Hsieh, J.C. Hsieh, P.W. Jurutka, Molecular mechanisms of vitamin D action, Calcif. Tissue Int. 92 (2013) 77–98.
- [6] G. Jones, S.A. Strugnell, H.F. Deluca, Current understanding of the molecular actions of vitamin D, Physiol. Rev. 78 (1998) 1193–1231.
- [7] G.D. Carter, 25-Hydroxyvitamin D: a difficult analyte, Clin. Chem. 58 (2012) 486–488.
- [8] J.M. Van Den Ouweland, M. Vogeser, S. Bacher, Vitamin D and metabolites measurement by tandem mass spectrometry, Rev. Endocr. Metab. Disord. 14 (2013) 159–184.
- [9] S.S. Tai, M. Bedner, K.W. Phinney, Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D₃ and 25-hydroxyvitamin D₂ in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry, Anal. Chem. 82 (2010) 1942-1948

- [10] H.C. Stepman, A. Vanderroost, K. Van Uytfanghe, L.M. Thienpont, Candidate reference measurement procedures for serum 25-hydroxyvitamin D₃ and 25hydroxyvitamin D₂ by using isotope-dilution liquid chromatography-tandem mass spectrometry, Clin. Chem. 57 (2011) 441-448.
- [11] W.J. Griffiths, P.J. Crick, Y. Wang, Methods for oxysterol analysis: past, present and future, Biochem. Pharmacol. 86 (2013) 3–14.
- [12] W.J. Griffiths, P.J. Crick, Y. Wang, M. Ogundare, K. Tuschl, A.A. Morris, B.W. Bigger, P.T. Clayton, Analytical strategies for characterization of oxysterol lipidomes: liver X receptor ligands in plasma, Free Radical Biol. Med. 59 (2012) 69–84.
- [13] W.J. Griffiths, M. Ogundare, A. Meljon, Y. Wang, Mass spectrometry for steroid analysis, in: M.S. Lee (Ed.), Mass Spectrometry Handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012 (Ch.14).
- [14] X.Y. He, G. Merz, P. Mehta, H. Schulz, S.Y. Yang, Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17β-hydroxysteroid dehydrogenase, J. Biol. Chem. 274 (1999) 15014–15019.
- [15] N. Shafqat, H.U. Marschall, C. Filling, E. Nordling, X.Q. Wu, L. Björk, J. Thyberg, E. Mårtensson, S. Salim, H. Jörnvall, U. Oppermann, Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD, Biochem. J. 376 (2003) 49–60.
- [16] X.Y. He, Y.Z. Yang, D.M. Peehl, A. Lauderdale, H. Schulz, S.Y. Yang, Oxidative 3α-hydroxysteroid dehydrogenase activity of human type 10 17β-hydroxysteroid dehydrogenase, J. Steroid Biochem. Mol. Biol. 87 (2003) 191–198.